

Beschorner U, Thalwitzer J, Waliszewski M, Redlich U, Vogel B, Härtel D Hansen A and Langhoff R

Center of Vascular Medicine "Oberrhein" (Mannheim – Speyer)

Clinic for Internal Medicine I: Angiology, Cardiology and Subsequent Complications of Diabetes mellitus

Diakonissenkrankenhaus Mannheim Germany

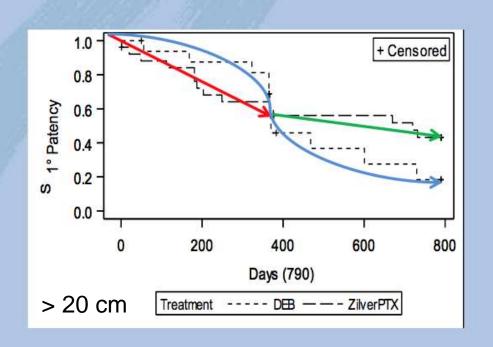
Academic Teaching Hospital Clinical Medicine Mannheim University Heidelberg

K.Amendt@diakonissen.de

Disclosure

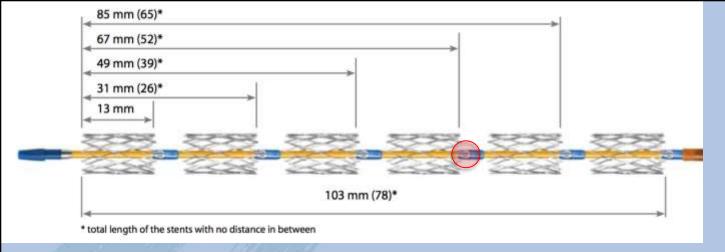
Spe	eaker name:
Dr.	Klaus Amendt
I ha	ave the following potential conflicts of interest to report:
X	Consulting
	Employment in industry
	Stockholder of a healthcare company
	Owner of a healthcare company
X	Co-owner of patent Multi-LOC
	I do not have any potential conflict of interest

Stents bring up some additional problems

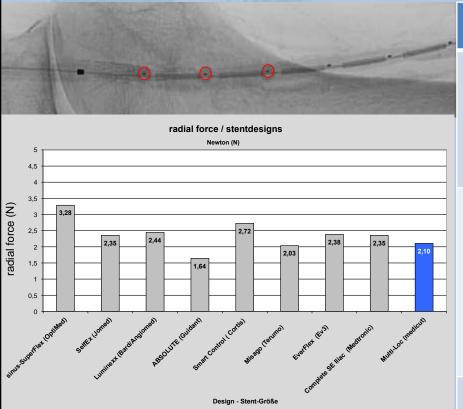

Stent- Disease

"...leave nothing behind...."

Primary Patency @ 24 Month Long Lesion Group Zilver PTX vs DCB only



Treatment	1° Patency (%)
DCB (n=18)	18.3
ZilverPTX (n=26)	43.1


Decreased patency for "DCB only" in long lesions!

"Crash" after 400 days

Components

6F

MSDS

Sheath Stents

Working length

VVOIKING IENGUI

Guide-wire

Individual Stent

Length Diameter

Radioopaque marker

Designe

Radial force

0,035``

6 ML-Stents

80 cm, 130 cm

13 mm 5, 6, 7, 8 mm

1/stent

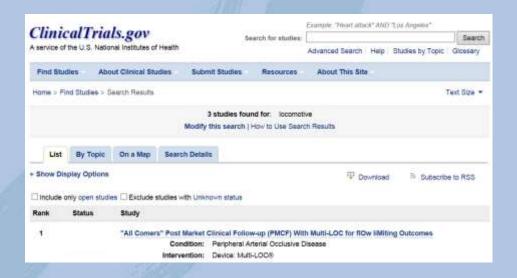
closed cell designe

comparable to standard nitinol stents

er 4 – 8 mm

Treated vessel diameter

DEKRA: CE – marking: 27.05.2015; FIM 17.06.2015 European Patent: No. 2775968: 07.09.2017



12.04.17

Multiple Stent delivery system: MSDS

multi-LOC (VascuFlex Multi-LOC ®)

Animal experiments (porcine) Clincal experiences chronic (3 w surv.) post CE- marking: acute multi-LOC Standard "long" nitinol stent Impl.: 20.08.15, FU 6-mo: 18.02.16; 12 mo: 18.08.16, 18 mo: 12.04.17: CCD: patent, ABI unchanged reproducibility of animal feasibility no stent fracture exact anatomically results superior patency controlled release nearly no neg. influence on vs standard long nitinol stent no stent loss biomechanical properties of arteries stabilized lumen, also in severely calcified lesions

Objective: to assess safety and efficacy of the multi-LOC peripheral

stents system to treat de novo and restenotic lesions

Design: non randomized prospective, multi-center registry

common femoral to distal popliteal artery,

all comers registry: RCC 2-5, Fontaine II- IV

Intended Use: flow limiting dissections and recoil after POBA and

DCB-dilatation.

"whenever stenting is indicated"

Inclusion criteria: PAOD: Rutherf.: 2-5, Fontaine: 2-4

(N: 200) stenosis and occlusions of SFA, PA1-3, also re-do

lesion length: suitable for release of at least 2 stents

with a distance of at least 5mm between 2 stents

reference vessel diameter: 4-7mm

distal run off: at least 1 vessel to the foot

collaterals supplying sufficient flow to the foot

also severe calcification, after subintimal PTA,

Exclusion criteria: Instent-restenosis

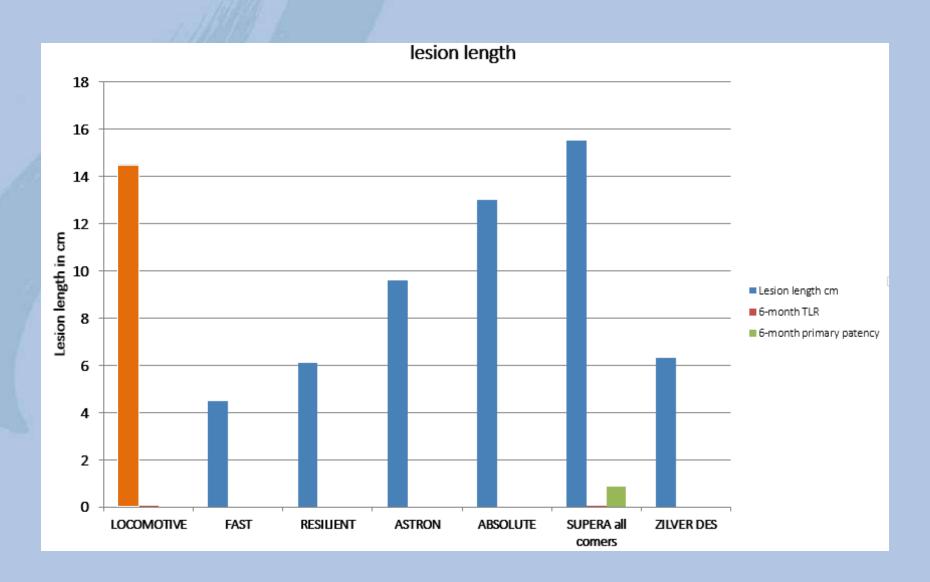
Restenosis after DCB

Primary endpoint: 6 month TLR- rate (LINC 2017)

Additional variables: 12 month TLR rate

@ 6 and 12 months: walking distance (S1, S2)

ABI,


CCD: patency- rate

RCC

amputation rate

LOCOMOTIVE registry Lesion morphology

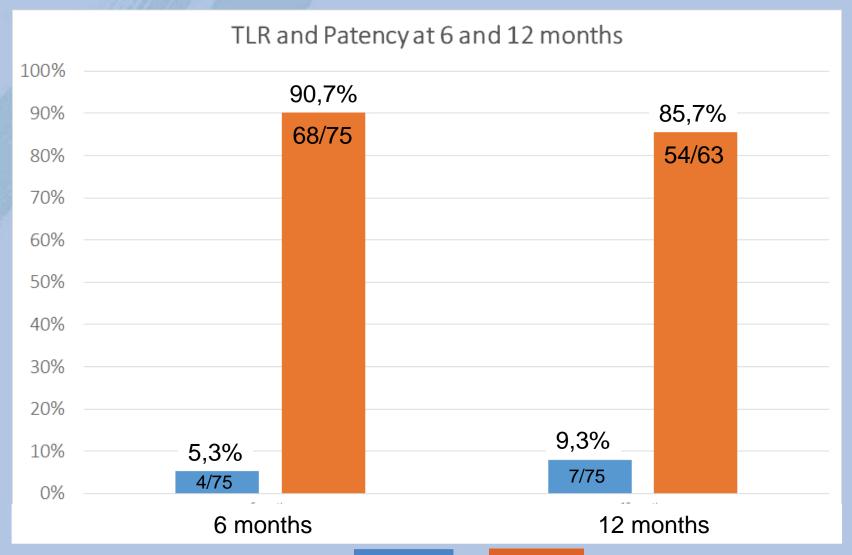
	All (n: 75)	CLI (n: 20)	no CLI (n: 55)	p-value
Target lesions/p	176/75	52/20	124/55	
Distal run off 1 2 3 no vessel	20 (26.7%) 25 (33.3%) 27 (34.7%) 4 (5.3%)	8 (40.0%) 5 (25.0%) 4 (20.0%) 3 (15.0%)	12 (21.8%) 20 (36.4%) 23 (40.0%) 1 (1.8%)	0.031
Lesion location SFA I+II SFA III+P1 P2+P3	80 (45.5%) 79 (44.9%) 17 (9.7%)	25 (48.0%) 23 (44.1%) 4 (7.7%)	55 (44.3%) 56 (45.2%) 13 (10.5%)	0.815
TASC II C/D	90 (51.1%)	38 (73.1%)	52 (41.9%)	<0.001
Total LL (cm) range	14.5±9.0 (3.5 - 45.0)	19.0±9.5 (8.0 – 40.0)	12.9±8.3 (3.5 – 45.0)	0.009
Diffuse vessel disease	159 (90.3%)	48 (90.6%)	111 (90.2%)	0.947
Calcification	171 (97.2%)	50 (94.3%)	121 (98.4%)	0.139
Total occlusion	64 (36.4%)	35 (60.0%)	29 (23.6%)	<0.001

Procedural details and device characteristics

	All patients	CLI	no CLI	p-value	
Patients	75	20	55	-	
Lesions	176	52	124	-	
Stent-ø (mm)	5.7±0.7	5.5±0.6	5.7±0.8	0.145	
released stents/pat.	5.1±2.2	6.0±2.3	4.8±2.2	0.054	
LL saved f. stenting	0.47±0.18	0.54±0.16	0.44±0.18	0.044	
Predilatation targ.les.					
POBA	133 (75.6%)	46 (88.5%)	87 (70.2%)		
DCB	17 (9.7%)	3 (5.8%)	14 (11.3%)	0.055	
POBA+DCB	23 (13.1%)	2 (3.8%)	21 (16.9%)		
Proced. success	85 (100.0%)	24 (100.0%)	61 (100.0%)	-	

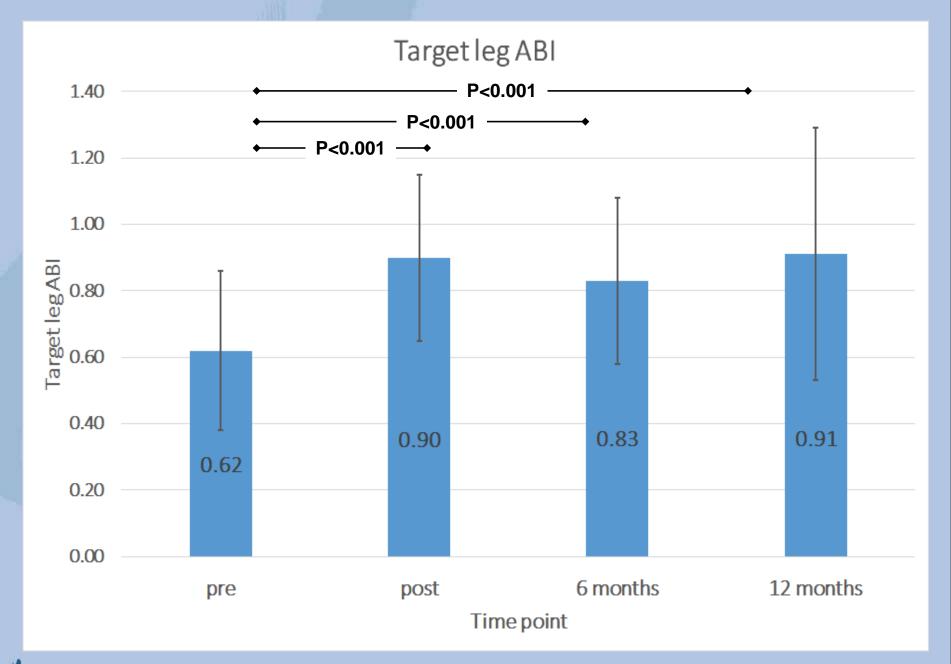
LOCOMOTIVE registry: 6-mo FU

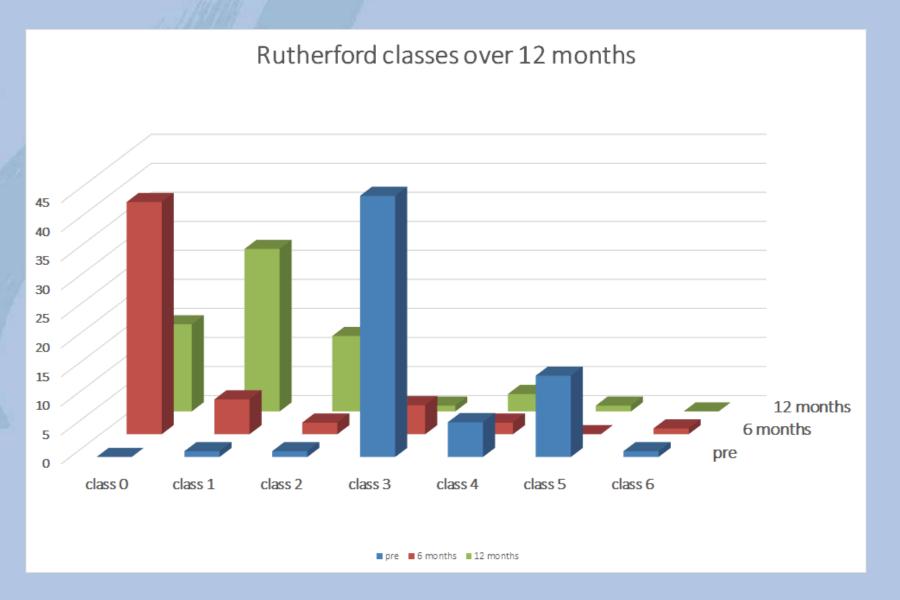
Clinical outcomes


	All patients	Critical limb ischemia	No critical limb ischemia	p-value
Number of FU	75 (100%)	20 (100%)	55 (100%)	0.727
Prim. patency:	90.7% (68)	95.0% (19)	89.1% (49)	0.436
TLR % (n)	5.3% (4)	5.0% (1)	5.5% (3)	0.938
Amputation target L	2 (2.7%)	2 (10.0%)	0 (0.0%)	0.017
Death: vascular	4 (5.7%)	2 (10.5%)	2 (3.9%)	0.017
non-vascular	2 (2.9%)	1 (5.3%)	1 (2.0%)	0.403

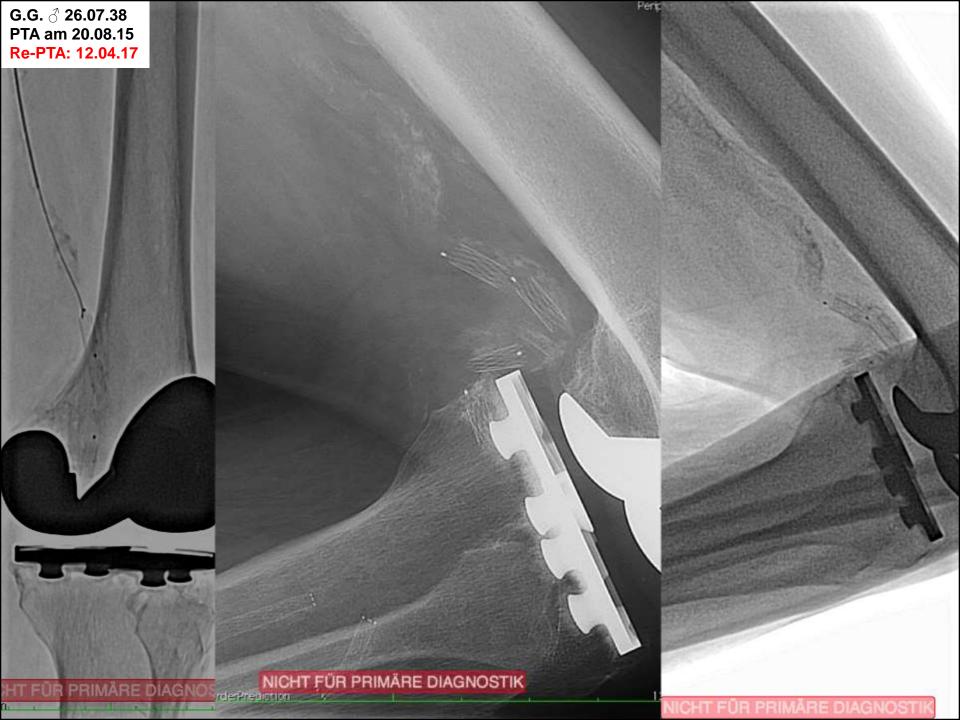
K. Amendt et al. VASA 2017;46(6):452-46

	All patients	CLI	no CLI	p-value
Number of FU	75 (100%)	20 (100%)	55 (100%)	-
Prim. Patency: (diameter sten. <50%)	85.7% (54/63)	93.3% (14/15)	83.3% (40/48)	0.334
TLR (n) Re-PTA-Lysis	9.3 % (7/75)	5.0% (1/20)	10.9% (6/55)	0.437
ff TLR	90.7%	95.0%	89.9%	n.s
Prim. Ass. Patency	96.8% (61/63)	100 %	95.8% (46/48)	n.s
Amputation target L	2 (2.9%)	2 (10.5%)	0 (0.0%)	0.099
Death: vascular	4 (5.3%)	2 (11.1%)	2 (4.0%)	
non-vascular	5 (7.2%)	1 (5.6%)	4 (7.8%)	0.384





	All patients	Critical limb ischemia	No critical limb ischemia	p-value
Patients	75	20	55	-
	12 m	onths		
Target leg ABI	0.91±0.38	0.91±0.40	0.91±0.38	0.973
	n=53	n=13	n=40	0.973
Rutherford shift pre vs. 12	2.2±1.3	2.8±1.7	2.1±1.0	0.038
months	n=60	n=15	n=45	0.036
Major amputations, target leg	2 (2.7%)	2 (10.0%)	0 (0.0%)	0.017
(+0)	n=75	n=20	n=55	0.017
Major amputations,	1 (1.3%)	1 (5.0%)	0 (0.0%)	0.095
contralateral leg	n=75	n=20	n=55	0.093
Death all causes	9 (12.0%)	3 (15.0%)	6 (10.9%)	0.630
(+3 in IC)	n=75	n=20	n=55	0.030
Death				
cardiac	1 (1.3%)	0 (0.0%)	1 (1.8%)	
vascular	3 (4.0%)	2 (10.0%)	1 (1.8%)	0.398
non-cardiovascular	5 (6.7%)	1 (5.0%)	4 (7.3%)	


Comments:

¹ statistical analysis not meaningful due to small patient numbers, ² based on angiographic or sonographic data only. All categorical variables were compared with the Pearson's Chi2 test, continuous variables were analyzed with the unpaired student t-test

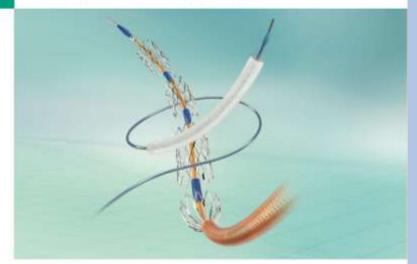
LOCOMOTIVE registry: 12-mo FU patients Conclusions

These data @ 12 months show that the MSDS strategy is safe and effective in patients with PAOD (RCC 2-5) with femoro-popliteal lesions:

- ➤ **High procedural success rate (100%)** to release the individual stent segments also in morphologically challenging lesions.
- No stent-loss, no conversion to standard stenting
- almost half of the lesion length could be saved from stenting as compared to the "long stent" strategy.
- > TLR rates in CLI and non-CLI patients of less than 10 %.
- primary patency: 85.7%
- ass. primary patency: 96.8% (61/63) (CLI: 100%, IC: 95.8%)

LOCOMOTIVE- registry has been extended including patients until 12/2018

N: 251 @ 13.01.2018


LOCOMOTIVE registry Further activities

Controlled studies with combination of DEB and spot-stenting with the VascuFlex Multi-LOC® are planned

Room 3: Technical Forum 13:30 – 15:00

LINC 2018 LECTURES Tuesday, January 30th, 2018

B. Braun booth #20b

Beschorner U, Thalwitzer J, Waliszewski M, Redlich U, Vogel B, Härtel D Hansen A and Langhoff R

Center of Vascular Medicine "Oberrhein" (Mannheim – Speyer)

Clinic for Internal Medicine I: Angiology, Cardiology and Subsequent Complications of Diabetes mellitus

Diakonissenkrankenhaus Mannheim Germany

Academic Teaching Hospital Clinical Medicine Mannheim University Heidelberg

K.Amendt @diakonissen.de