

New manufacturing process and stent design are key elements to improve clinical outcome: the iVascular IVolution stent example

P. Goverde MD,K. Lauwers MD, L. Helsloot MD, K. Taeymans MD, P. Verbruggen MD, Vascular Clinic ZNA, Antwerp,Belgium

F. Sun, F. Prima, Paris Institute of Technology, Paris, France

Diclosure

Speaker's name: Peter Goverde

I have the following potential conflicts of interest to report: **Consulting**:

Abbott Vascular; Angioslide; Atrium Maquet Getinge group; Bard Peripheral Vascular; Cardionovum; Cordis Cardinal Health; IMDS; Ivascular; Stille; Veyran; Ziehm Imaging

Material or Metal defects

Material or metal fatigue

Paristech

HQ VascE MAG Ø 50 kV 21.4 mA cGy cm³ 6997.64 52:42 min

8000

Lij sens Emil PATs

0.0

wa 100

P

1

2016-02-14 11:00:19

l....

50

1929-06-21

6

SX stent: what are the potential clinical issues?

RESTENOSIS

STENT FRACTURE THROMBUS

IMPROVING STENT OUTCOMES

 1.
 Limiting thrombus

 Preventing
 formation

 Can the stent production proces
 formation

 be an influencing factor
 be an influencing factor

 And can this be optimised ?
 stent

rupture

4. OPTIMAL POST PRODUCTION CONTROL

KEY POINT 1: Equilibrated radial force

- To maintain the artery open
- Without applying high permanent stress on artery wall

KEY POINT 2: Surface treatment = passivation

- To avoid corrosion and Nickel release
- Ultra thin layer of TiO2 on stent Surface after electro polishing
- Key: adequate thickness of TiO2, or reverse effects

Thickness (nm)	>3500	420	130	5
Cracks	Very high	Medium	Medium	No
Corrosion resistance	Very low	High	Medium	Very high
Nickel on surface	Yes, many	Yes	Yes	No

Best option according to FDA conducted studies

- Corrosion analysis to test the passivation layer (to avoid corrosion)
 - 1. Pitting corrosion test: conducted following the ASTM F2129 to evaluate the corrosion resistance of a stent
 - 2. SEM analysis: to reveal the weak points in corrosion through images

Paristech

	iVolution	Smart Flex	Complete SE	Absolout Pro	Lifesten t	Epic	
Applied potential (mV)	>1000	755	735	645	520	427	
Remarks	No break	Break	Break	Break	Break	Break	
Abblied potential (m/ 056 450 650 450 350							
iVolution	iVolution Competitor	Smart Flex	Complete SE Lowe	Absolute Pro ering inflat reaction	Lifester mmator	nt E Prev rest	1. venting enosis
Pictures p	property of the	Paris Institute o	f Technology	_			

2A. the importance of stent design

Best resistance to fracture = stent design without bridges nor direct connections (J.Endovascular Ther2010 – Muller-Hulsbeck Comparison 2nd generation stents for application in SFA)

Vascular

iVolution

Self-expanding nitinol stent system

- iVolution stent doesn't have bridges
- Continuous design
- Open cell design with short cell length

2B. Optimal quality of material

- No inclusions (no defects) = absence of weak point in the material
- There can be different kinds of inclusions in the nitinol tube:

OXYGEN: very hard

Surface TiO₂ Passivation in contact with the atmosphere Wall thickness of the layer

CARBIDES: soft

TiC

Happens if the alloy is manufactured in a graphite kettle

Inside Ti₄Ni₂O_x Happens during ingot manufacturing Can create tunnels during tube extrusion

> Decreased resistance to fatigue, corrosion and ductility > Fractures on the line of the inclusion

No inclusions (no defects)

The absence of inclusions in the tube of the final stent are key to ensure the quality of the stents and to avoid the risk of fractures

Pictures property of the Paris Institute of Technology

• 6 stents are evaluated during comparative bench tests

6 stent designs have been evaluated during 4 sets of comparative bench tests, to assess:

- 1st flexibility : Stent ability to adapt to the vessel anatomy:
- 2nd flexibility test : Stent ability to recover its shape after impact
- Kinking test
- Stent resistance to bending

FLEXIBILITY is defined as the stent ability to adapt to the anatomy of the treated artery without compromising the function of the implant.

The more flexible, the more adaptability to the vessel.

HIGH FLEXIBILITY STENTS

SEMI FLEXIBLE STENTS

iVOLUTION - iVASCULAR

ABSOLUT PRO LL - ABBOTT

COMPLETE SE - MEDTRONIC

NOT FLEXIBLE STENTS

EPIC - BS

Pictures property of the Paris Institute of Technology

LIFESTENT - BARD

SMART FLEX - CORDIS

FLEXIBILITY as the capability of not modifying the treated vessel. The lower is the force of the stent, higher flexibility and better adaptability to the vessel anatomy.

KINKING:

- The radius at which the stents looses its structure
- Stent ability to adapt to the curvatures. •

Pictures property of the **Paris Institute** of Technology

ABBOTT

RESISTANCE TO BENDING is the measure of the stretching and shortening forces at which the stent is subjected to. The larger the force, the lower the stent resistance to leg bending

3B. Perfect surface finishing Importance of Electro Polishing

Diagn Interv Radiol 2015; 21: 403-409

Comparative study of the corrosion behavior of peripheral stents in an accelerated corrosion model: experimental *in vitro* study of 28 metallic vascular endoprostheses

PURPOSE

Clinical cases of stent-fractures show that Corrosion behavior might play a

role in these fractures. Implanted *in vivo*, especially in combination with other implanted foreign materials, these metallic products are exposed to special conditions, which can cause a process of corrosion. Here, we aimed to test the corrosion potential of stents made of different materials in an *in vitro* setting.

CONCLUSION

The analysis of corrosion behavior may be useful to select the right stent fulfilling the individual needs of the patient within a large number of different stents. Electropolished stents showed the best results

3B. Perfect surface finishing Importance of Electro Polishing

Magnification 75 X

Pictures property of the Paris Institute of Technology

3B. Perfect surface finishing Importance of Electro Polishing

Magnification 100

Pictures property of the Paris Institute of Technology

The iVascular technical solutions

• Post production analysis & control :

- As important as the optimal production line
- Mostly done by randomised control
- Mostly done by human inspection
- Not every stent will be controled

-Thus failure can slip through

Post production control

six

The Q six is able to simultaneously acquire and analyze images of the outer and inner surfaces as well as the sidewalls of the stent structure at a rate ranging from 5 mm²/s to 20 mm²/s.

- High NA optical design, premium CF60-2 Nikon objectives
- multi-million pixel imaging array
- unique combination of light sources provide extremely sharp views of the complete stent surface with unprecedented real color, resolution and contrast.
- High-resolution imaging and 3D optical measurement allow for complete surface inspection of the stent structure, reducing
 - Errors
 - quality control costs
 - inspection time
 - making the task of acceptance faster, easier and more reliable

Post production control

ParisTech

Surface topography

Verify the depth of scoremarks or scratches of your stents. 3D Topography of a defect can be obtained in seconds with a lateral resolution of 0.5 microns and a vertical resolution of 1mm.

Extremely high inspection rate

UP1 CORONARY STENT PER TO MINUTE

3D modes

Overcoming the limits of 2D Imaging

Non-contact optical 3D profiling using Sensofar's proven Vertical Scanning Interferometry (VSI) technology.

1.96 um

Mapping the thickness of coatings

Check the performance of your process and costing uniformity. Thickness of opticable transports costings in respect all across the width of the struct with a lateral resolution of 2 min up that a vertical resolution of 2 min up that they seconds. The minimum value of the thickness that can be measured in approximately 2 missions.

Surface roughness

Check the quality of your electropointing process. Standard surface torture parameters are measured according to ISO 25178. The operator can select areas of measurement at the outer surface of the stent and filtering parameters.

iVase to improv	cular technical solutions ve SX stent clinical outcomes
Fracture risk	 ✓ Optimal stent design ✓ Controlled manufacturing process to prevent material defect and weak points
Smooth endothelialization to prevent thrombus	 ✓ Optimal design to respect artery and blood flow hemodynamics ✓ Ideal surface finishing
Low Inflammatory reaction	 ✓ Balanced radial force ✓ Stent passivation to prevent corrosion
Post production control	 ✓ Qsix control of outer/inner/side surfaces ✓ EVERY PRODUCED STENT IS INSPECTED

Thank You for Your attention!

New manufacturing process and stent design are key elements to improve clinical outcome: the iVascular IVolution stent example

P. Goverde MD,K. Lauwers MD, L. Helsloot MD, K. Taeymans MD, P. Verbruggen MD, Vascular Clinic ZNA, Antwerp,Belgium

F. Sun, F. Prima, Paris Institute of Technology, Paris, France